首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43859篇
  免费   4149篇
  国内免费   5989篇
  2024年   39篇
  2023年   646篇
  2022年   884篇
  2021年   2157篇
  2020年   1649篇
  2019年   2023篇
  2018年   1910篇
  2017年   1375篇
  2016年   1937篇
  2015年   2715篇
  2014年   3261篇
  2013年   3367篇
  2012年   4181篇
  2011年   3749篇
  2010年   2444篇
  2009年   2300篇
  2008年   2704篇
  2007年   2348篇
  2006年   2124篇
  2005年   1829篇
  2004年   1457篇
  2003年   1255篇
  2002年   1090篇
  2001年   908篇
  2000年   855篇
  1999年   738篇
  1998年   437篇
  1997年   415篇
  1996年   322篇
  1995年   327篇
  1994年   265篇
  1993年   206篇
  1992年   290篇
  1991年   260篇
  1990年   247篇
  1989年   185篇
  1988年   159篇
  1987年   152篇
  1986年   113篇
  1985年   123篇
  1984年   72篇
  1983年   77篇
  1982年   53篇
  1981年   36篇
  1980年   23篇
  1979年   32篇
  1978年   26篇
  1977年   27篇
  1976年   24篇
  1975年   20篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
2.
3.
Protein collective motions play a critical role in many biochemical processes. How to predict the functional motions and the related key residue interactions in proteins is important for our understanding in the mechanism of the biochemical processes. Normal mode analysis (NMA) of the elastic network model (ENM) is one of the effective approaches to investigate the structure-encoded motions in proteins. However, the motion modes revealed by the conventional NMA approach do not necessarily correspond to a specific function of protein. In the present work, a new analysis method was proposed to identify the motion modes responsible for a specific function of proteins and then predict the key residue interactions involved in the functional motions by using a perturbation approach. In our method, an internal coordinate that accounts for the specific function was introduced, and the Cartesian coordinate space was transformed into the internal/Cartesian space by using linear approximation, where the introduced internal coordinate serves as one of the axes of the coordinate space. NMA of ENM in this internal/Cartesian space was performed and the function-relevant motion modes were identified according to their contributions to the specific function of proteins. Then the key residue interactions important for the functional motions of the protein were predicted as the interactions whose perturbation largely influences the fluctuation along the internal coordinate. Using our proposed methods, the maltose transporter (MalFGK2) from E. Coli was studied. The functional motions and the key residue interactions that are related to the channel-gating function of this protein were successfully identified.  相似文献   
4.
5.
Biochar adsorption presents a potential remediation method for the control of hydrophobic organic compounds (HOCs) pollution in the environment. It has been found that HOCs bound on biochar become less bioavailable, so speculations have been proposed that HOCs will persist for longer half-life periods in biochar-amended soil/sediment. To investigate how biochar application affects coupled adsorption-biodegradation, nonylphenol was selected as the target contaminant, and biochar derived from rice straw was applied as the adsorbent. The results showed that there was an optimal dosage of biochar in the presence of both adsorption and biodegradation for a given nonylphenol concentration, thus allowing the transformation of nonylphenol to be optimized. Approximately 47.6% of the nonylphenol was biodegraded in two days when 0.005 g biochar was added to 50 mg/L of nonylphenol, which was 125% higher than the relative quantity biodegraded without biochar, though the resistant desorption component of nonylphenol reached 87.1%. All adsorptive forms of nonylphenol (f rap, f slow, f r) decreased gradually during the biodegradation experiment, and the resistant desorption fraction of nonylphenol (f r) on biochar could also be biodegraded. It was concluded that an appropriate amount of biochar could stimulate biodegradation, not only illustrating that the dosage of biochar had an enormous influence on the half-life periods of HOCs but also alleviating concerns that enhanced HOCs binding by biochar may cause secondary pollution in biochar-modified environment.  相似文献   
6.
To investigate the possible mechanisms for biological effects of 1,800 MHz mobile radiofrequency radiation (RFR), the radiation-specific absorption rate was applied at 2 and 4 W/kg, and the exposure mode was 5 min on and 10 min off (conversation mode). Exposure time was 24 h short-term exposure. Following exposure, to detect cell DNA damage, cell apoptosis, and reactive oxygen species (ROS) generation, the Comet assay test, flow cytometry, DAPI (4′,6-diamidino-2-phenylindole dihydrochloride) staining, and a fluorescent probe were used, respectively. Our experiments revealed that mobile phone RFR did not cause DNA damage in marginal cells, and the rate of cell apoptosis did not increase (P > 0.05). However, the production of ROS in the 4 W/kg exposure group was greater than that in the control group (P < 0.05). In conclusion, these results suggest that mobile phone energy was insufficient to cause cell DNA damage and cell apoptosis following short-term exposure, but the cumulative effect of mobile phone radiation still requires further confirmation. Activation of the ROS system plays a significant role in the biological effects of RFR. Bioelectromagnetics. © 2020 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc.  相似文献   
7.

Introduction  

The Fibromyalgia Impact Questionnaire (FIQ) is a commonly used instrument in the evaluation of fibromyalgia (FM) patients. Over the last 18 years, since the publication of the original FIQ, several deficiencies have become apparent and the cumbersome scoring algorithm has been a barrier to widespread clinical use. The aim of this paper is to describe and validate a revised version of the FIQ: the FIQR.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号